Sign In
​Plant Virus Biotechnology​​​​

​Plant Virus Biotechnology​​​​

Grupo de investigación dependiente del

Biotechnology Department

Viruses offer a myriad of opportunities to be targets or tools of plant biotechnology. In our research group we focus our work on two main ones.

As particle-forming biological entities, the viral capsids can be regarded as true viral nanoparticles (VNPs). This view allows the deployment of viruses as objects for nanobiotechnological developments. An extension of this view takes advantage of the replicative properties of viruses, leading to their utilization as vectors for transient expression of foreign proteins in plants.

As intracellular pathogens, viruses interact with plant components to perform infection. These interactions often lead to host physiological or developmental alterations, yet they have the built-in advantage of being a useful lead to understanding and potentially modifying both the interaction itself, and plant physiology or development with different purposes.

​Investigation

NANOBIOTECH DEVELOPMENTS

Theranostic tools

  • Theranostics is a made-up word combining therapy and diagnostics of biologicals. Specific tools can be applied in both areas, hence the term.
  • Theranostics is particularly well developed in the nanoparticle world. Many functionalized nanoparticles have found their theranostic applications.
  • VNPs, as a special type of nanoparticle, can be also used in theranostics.

We use functionalized Turnip mosaic virus (TuMV) for theranostics purposes. Some of the applications include functionalizations with peptides, antibodies, enzymes, plant natural products and chemicals.

These functionalized VNPs are used to boost immunization, the ultrasensitive detection of antibodies and autoantibodies, antimicrobials or antitumorals.

Structure-based design of VNPs

  • VNP functionalizations for different purposes can be rationalized if the designs are based on the structure of the VNP.
  • When the structure of the VNP as a whole and of the different domains of the viral coat protein are known, spatial models of the functionalized particle are feasible, which facilitates the designs.

We have solved the structure of TuMV, both virions and virus-like particles, using cryoelectron microscopy. The solved structure guides our designs.

Viral molecular farming

  • Plants are very convenient organisms for the expression of foreign proteins in them. The production of proteins in plants for their use with several purposes is normally termed Molecular Farming.
  • Most modern approaches for molecular farming involve transient expression of the foreign protein, thus avoiding transgenic strategies.
  • For transient expression, the use of vectors based on plant viruses has become most prevalent.

We converted TuMV into vectors for transient expression of proteins in plant species which are hosts of the virus. Many proteins of different origins have been produced.

PLANT-VIRUS INTERACTIONS

Virus infections and plant development

  • Specific interactions between viral-encoded proteins and their plant cellular counterparts are the ultimate responsible for the symptoms associated with the diseases induced by viral infections.
  • In many instances, induced diseases alter the plant developmental pattern giving rise to strong abnormalities of the plant global growing and reproductive plan. On the other hand, the developmental stage of the plant at the time of infection can have a strong effect on the infection itself.
  • Although long recognized, the intimate connection between virus infections and plant development has not received the research attention it deserves, considering the strong biotechnological implications that may derive.

We uncovered the impact of the development of a flower stalk in TuMV-infected Arabidopsis (and other) plants. The detailed characterization of this interconnection is shedding light on the molecular details of a process susceptible of biotechnological exploitation.

Viral determinants of pathogenicity

  • In most viral infections the nature and intensity of the induced disease and the very success of the infection itself, relies on the cellular and subcellular interactions established by specific viral components. These are called viral determinants of pathogenicity.
  • The identification of viral determinants of pathogenicity is a fundamental aspect in the study of plant-virus interactions, since it provides relevant information to understand diseases.
  • From a biotechnological standpoint, knowledge about viral determinants of pathogenicity continues to contribute to the development of antiviral strategies.

We have identified several pathogenicity determinants of specific viral diseases, and continue to do so, especially in connection with their influence on plant development.​

Miembros

Coordinador de Grupo

Este sitio web utiliza cookies propias y de terceros para su funcionamiento y con el fin de analizar las páginas más visitadas. Puede aceptar o rechazar nuestras cookies haciendo clic en los botones a continuación o visitando nuestra página de política de cookies. Se aplica una opción predeterminada de 'no consentimiento' en caso de que no se haga una elección y un rechazo no limitará su experiencia de usuario. Si desea obtener más información sobre nuestra política de cookies, haga clic en el botón "Más información" a continuación.